In response to the New York State government bill that would block the New York City Bag Law, due to go into effect on February 15, 2017

 “Plastic bag regulation: top priority given at the United Nations HQ, Informal Consultative Process on Oceans and the Law of the Sea, 2016

The public may commonly associate microplastics with microbeads from personal care products, yet plastic bags are a significant source of microplastics that accumulate toxins and deserve immediate consideration from policymakers due to negative environmental and health implications.

“Plastic” is a term collectively used for various polymers, of which polyethylene (PE) is the most widely used, surpassing polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), and polyethylene terephthalate (PET). The most common application of PE is plastic shopping or carryout bags (“plastic bags” hereafter), which have a key lightweight or low-density physiochemical property. Since PE is lighter and has a lower density than water, it can float on the water’s surface, enabling it to travel long distances, as far as the open ocean. On the sea’s surface, PE is exposed to sunlight, leading to it breaking down into smaller pieces or microplastics.

One of the major problems of microplastics in the marine environment is their ability to accumulate pollutants, such as oil, PCBs and organochlorine pesticides in seawater through the sorption process. The sorption of pollutants to plastics is considered the “toxification” of plastics. The critical factor of PE in the marine environment is that it has the highest capacity of toxification among all the polymers1, 2).  Therefore, International Pellet Watch (IPW, is utilizing PE resin pellets as the medium to monitor marine pollution.

Ingestion of microplastics by shellfish3) and fish4, 5) has been reported in recent studies. Because plastics carry pollutants, ingestion of plastics by marine organisms can be considered internal exposure of pollutants to the biota. We have confirmed the transfer of pollutants from ingested plastics to the biological organs of seabirds6). Laboratory experiments have also confirmed the similar plastic-mediated transfer of chemicals to fish tissue7).  Furthermore, recent publications8-11) suggest adverse effects of some biological functions, such as the reproduction of oyster, caused by ingested plastics and associated chemicals11). The amounts of plastics used in the experiments were larger than those observed in the current marine environment.  However, the cumulative quantity of plastic input to the ocean is predicted to increase by an order of magnitude by 202512).  The amounts of plastics in the marine environment are steadily increasing and microplastics are persistent in the marine environment since they cannot be removed once they enter the ocean.

Figure 1 ( illustrates that polyethylene (PE) is dispersed throughout the globe and that all the pellets are toxified with PCBs. The same toxification occurs for PE fragments derived from plastic bags because they are made of the same polymer type as the resin pellets. Policymakers in New York City, New York State, and Northern New Jersey should be taking note of the extremely high concentration of PCBs found in the PE pellets in the New York/New Jersey regions, including the Great Lakes.

As a precautionary principle, we must reduce the inputs of plastic waste to the sea. Government policies, such as plastic bag bans, fees and taxes on single-use carryout bags, have already shown to be successful in cities, states, and countries around the world, leading to significant reduction of plastic bag usage and effectively working as a countermeasure against plastic pollution.

As mentioned above, PE, the most commonly used polymer, has the highest sorption capacity among all polymers and is most readily transformed into microplastics. At the 17th meeting of the United Nations Open-ended Informal Consultative Process on Oceans and the Law of the Sea which was held United Nations Headquarters in New York City, I stated that banning PE products must be considered as a top priority13). Protecting the New York City bag fee law is critical for reducing marine pollution caused by polyethylene, the plastic polymer with the highest toxification capacity entering our precious waterways.

Thank you so much for your attention.

Hideshige Takada, Ph.D

Coordinator of International Pellet Watch (IPW)
Laboratory of Organic Geochemistry (LOG)
Tokyo University of Agriculture and Technology,
Fuchu, Tokyo 183-8509, Japan


1)     Endo, S.; Takizawa, R.; Okuda, K.; Takada, H.; Chiba, K.; Kanehiro, H.; Ogi, H.; Yamashita, R.; Date, T., Concentration of Polychlorinated Biphenyls (PCBs) in Beached Resin Pellets: Variability among Individual Particles and Regional Differences. Mar. Pollut. Bull. 2005, 50, (10), 1103-1114.

2)     Rochman, C. M.; Hoh, E.; Hentschel, B. T.; Kaye, S., Long-Term Field Measurement of Sorption of Organic Contaminants to Five Types of Plastic Pellets: Implications for Plastic Marine Debris. Environ. Sci. Technol. 2013, 47, (3), 1646-1654.

3)     Van Cauwenberghe, L.; Janssen, C. R., Microplastics in bivalves cultured for human consumption. Environ. Pollut. 2014, 193, (0), 65-70.

4)     Lusher, A. L.; McHugh, M.; Thompson, R. C., Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel. Mar. Pollut. Bull. 2013, 67, (1–2), 94-99.

5)     Tanaka, K.; Takada, H., Microplastic fragments and microbeads in digestive tracts of planktivorous fish from urban coastal waters. Scientific Reports 2016, 6, 34351.

6)     Tanaka, K.; Takada, H.; Yamashita, R.; Mizukawa, K.; Fukuwaka, M.-a.; Watanuki, Y., Facilitated Leaching of Additive-Derived PBDEs from Plastic by Seabirds’ Stomach Oil and Accumulation in Tissues. Environ. Sci. Technol. 2015, 49, (19), 11799-11807.

7)     Wardrop, P.; Shimeta, J.; Nugegoda, D.; Morrison, P. D.; Miranda, A.; Tang, M.; Clarke, B. O., Chemical Pollutants Sorbed to Ingested Microbeads from Personal Care Products Accumulate in Fish. Environ. Sci. Technol. 2016, 50, (7), 4037-4044.

8)     Rochman, C. M.; Hoh, E.; Kurobe, T.; Teh, S. J., Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress. Scientific Reports 2013, 3, 3263.

9)     Browne, M. A.; Niven, S. J.; Galloway, T. S.; Rowland, S. J.; Thompson, R. C., Microplastic Moves Pollutants and Additives to Worms, Reducing Functions Linked to Health and Biodiversity. Current Biology 2013, 23, (23), 2388-2392.

10)    Lönnstedt, O. M.; Eklöv, P., Environmentally relevant concentrations of microplastic particles influence larval fish ecology. Science 2016, 352, (6290), 1213-1216.

11)    Sussarellu, R.; Suquet, M.; Thomas, Y.; Lambert, C.; Fabioux, C.; Pernet, M. E. J.; Le Goïc, N.; Quillien, V.; Mingant, C.; Epelboin, Y.; Corporeau, C.; Guyomarch, J.; Robbens, J.; Paul-Pont, I.; Soudant, P.; Huvet, A., Oyster reproduction is affected by exposure to polystyrene microplastics. Proceedings of the National Academy of Sciences 2016, 113, (9), 2430-2435.

12)    Jambeck, J. R.; Geyer, R.; Wilcox, C.; Siegler, T. R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K. L., Plastic waste inputs from land into the ocean. Science 2015, 347, (6223), 768-771.

13)    Report on the work of the United Nations Open-ended Informal Consultative Process on Oceans and the Law of the Sea at its seventeenth meetingLetter dated 20 July 2016 from the Co-Chairs of the Informal Consultative Process addressed to the President of the General Assembly (see page 11 for my statement)

9月15日~20日 マレーシアサンプリング

レジンペレットとマイクロプラスチックは、マレー半島西海岸南部に位置するMalacca(マラッカ)、そして首都 Kuala Lumpur(クアラアルンプール)と Malacca の間に位置する Port Dickson(ポートディクソン)の二つの砂浜で採取しました。

%e5%85%a8%e4%bd%93%e5%9c%b0%e5%9b%b3%e3%80%80%e6%94%b9 %e3%83%9e%e3%83%ac%e3%83%bc%e3%82%b7%e3%82%a2%e5%9c%b0%e5%9b%b3

サンプリング初日の16日。初めに向かった Port Dicksonは首都Kuala Lumpurから近く、海水浴場としても利用されています。




続いて向かったのは Malacca。
写真では伝わりにくいですが、ここは先程の Port Dicksonよりも海水が茶色く濁っていました。
image%e2%91%a2 image%e2%91%a3


2016-10-05 | ブログ

9月9日~10日 仙台・気仙沼ペレット採取



~2015年度に採取されたペレットによるJapanese Pellet WatchのPAHsの結果~













2016-05-29 | お知らせ






Microplasticsこれらのプラスチックは紫外線や波の力で、細片化、微細化して、マイクロプラスチックとなる。実際にペットボトルなどの大きなプラスチックゴミの周辺をよく見ると、おびただしい数のプラスチック片、マイクロプラスチックが散乱している。形や色は東京湾で観測されるものに似ている。東京湾のマイクロプラスチックは、流域の陸上、私たちの生活からもたらされたものだ。日本周辺の海域のマイクロプラスチックが世界平均の30倍だという観測結果から、「それらは中国や東南アジアから海流で運ばれてきたからだ」と言って、「自分たち日本人は排出者ではない」というようなことが言われることもある。しかし、それが間違いであることも、この写真は物語っている。もちろん黒潮に乗って流れてくるものもあるだろう、しかし、東京湾について言えば、マイクロプラスチックの大半は流域から排出されたプラスチックがその起源であろう。我々自身の陸上での使い捨てプラスチックの使いすぎが原因なのである。No single-use plastics!




2016-04-09 | お知らせ





分析中のペレット (2016年4月8日)


大島 吉海町(愛媛県今治市)

大島 吉海町(愛媛県今治市) 詳細地図


牧川港周辺(種子島) 詳細地図


2016-03-31 | お知らせ





2016-03-29 | お知らせ

4月3日 府中(東京)で映画「Trashed」+ 解説講演

4月3日 (日)午前10時から府中(東京)で映画「Trashed-ゴミ地球の代償」上映会が行われます。映画のあとに高田が解説と補足の講演を行います。2回の上映+講演です。2回目は午後1時からです。よい映画です。この映画を観ると、東京23区のようにプラゴミを焼却することが問題であることもよくわかると思います。埋立ても浸出水など問題があります。海に入ってきて問題になることはこのサイトでもよく書いていることです。やはり、使い捨てのプラスチックは減らさなければいけないですね。

2016-03-23 | お知らせ








2016-03-21 | お知らせ


OsakaBayMPCollectionLR先週(3/16)徳島で開催された第50回水環境学会で京都大学の田中周平先生から、大阪湾と琵琶湖のマイクロプラスチックに関する発表がありました。昨年11月に我々も参加した調査の結果の報告です。海水、湖水中、および海底、湖底堆積物中のマイクロプラスチックの分析結果が報告されました。水中、堆積物共にマイクロプラスチックの汚染レベルは東京湾と同程度でした。大阪湾のマイクロプラスチック中のフッ素系界面活性剤の分析結果も報告されました。最も高濃度で検出されたフッ素系界面活性剤はPFHxAで神崎川河口で1853 ng/g-dryでした。これらのフッ素系界面活性剤は撥水系の化粧品などに含まれている成分だということです。神崎川上流にあるフッ素化学工場からの排出が影響している、とのことです。PCBsのようなレガシー汚染物質だけでなく、現在排出が続いている汚染物質もマイクロプラスチックに含まれることを端的に示す結果です。今年は大阪湾での柱状堆積物を採れればと考えています。(Shige)

1 2 3